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One-dimensional stationary electrohydrodynamic flows of a medium are inves- 
tigated in connection with the problem of shock wave structure with allowance 

for thermal conductivity effects when those of viscosity can be neglected. The 
behavior of integral curves of equations which describe such flow is investigated 
in the velocity-electric ( uh’ ) and in the velocity-temperature ( UT ) fields. 
Conditions for which a continuous shock wave structure, produced by the thermal 

conductivity mechanism, exists, are determined. It is shown that it is possible for 
the shock wave to have a structure with an isothermic shock, while at the same 

time it is impossible to obtain a continuous flow inside that structure. Conditions 
for which such cases are possible are established. Depending on conditions ahead 

of the wave front, the electric field may be either constant or alternating. Rela- 
tionships which make it possible to determine the field downstream of the wave 
front are indicated for the latter case. 

1. Statement of the problem. Let us consider the flow in an electric field 
of an inviscid heat-conducting gas with a positive volume charge q > 0. We select the 

system of coordinates with the z-axis directed downstream. We assume that all quanti- 

ties depend only on z , and that the gas velocity, the electric field and the density of the 
electric current have components only along the x-axis. We denote these quantities, 
respectively, by u, E and j. In an electrohydrodynamic approximation the considered 

flow is defined by the following system of equations [l]: 

p*u* = m, p* = p*RT*, p*u?a + p* - g = n* (1.1) 

h 
dT* -= 
dx 

P*U* (c,T* + + Use) + j (cp* - ‘PI*) - z* 
@* -=- 
dx 

E*, $ zz 4w*, q* (u* + bE*) = j 

where m, Z*, II* and j are constants of integration determined by flow parameters 

at some point x = x1, where they are denoted by subscript 1. 
Investigation of the electrohydrodynamic shock waves with allowance for thermal con- 

ductivity will be carried out in the formulation adopted in [2, 33. For q* # 0 the con- 
sidered electrohydrodynamic flow is everywhere nonuniform. It is assumed that a zone 

I‘* = {xZ < z < xg} of considerable gradients of some of the flow parameters, as 
compared to gradients outside it, exists in the flow region. 

We introduce quantities 1 = h / (cs,pl*ul*) and L = ul*' I (Mb 1 j I) whose 

dimension is that of length, and pass to the dimensionless variables 
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If the coefficients of thermal conductivity A and mobility L are constant, the system 

of Eqs. (1.1) in these variables assumes the form 

Let us establish the physical meaning of quantities I and L of dimension of length. 
The thermal conductivity coefficient h - Rpl*z [l],where z is the time of gas particle 
free run. Let I, be the iength of the free path and r+ - (RT*)‘~2 the mean thermal 

velocity of particles. Then 
I - zmy / ul’ - pJ+Gl, 

The length d is, thus, of the order of the mean free path of gas particles. The expression 
for length t can be rewritten as L = E, I (4nqo), where E, = ul*/b and qo = j i 1 /uI*. 
The quantities E, and q. were used as the characteristic intensities of the electric field 

and charge density for reducing equations to dimensionless form. The sixth of Eqs, (1.1) 
shows that the length L is of the order of the length required for the charge q. to gene- 

rate field E,. In other words, the characteristic dimension of nonuniformity in the region 
outside the zone of considerable gradients is taken as the characteristic length L for 

reducing the variable 2 to dimensionless form. 

We assume that the ratio of lengths 1 / L = e < 1. Let furthermore the interaction 
parameter 5’ be arbitrary, the dimensionless field E:, < e-l, and the Mach number 
n/r,> 1. 

It will become evident from the qualitative analysis of integral curves of system 
(1.2) - (1.4) given below that the length of the zone of considerable gradients r {cs < 

5 < 9,) (zone of the shock wave structure) is of the order of e. We choose points 5, 

and 5, outside the zone r close to points & and & , respectively. From the first 
of Eqs. (1.4) we have q (6&) - cp (&) ==: A GE:1 - SE’, < 1, i. e. the potential va- 
riation in the region of the shock wave structure is small and it is, consequently, possible 
to neglect the penultimate term in the right-hand side of Eq.(1.3). We introduce the 
notation 

L*(U,E)==ufE, L,(u,E,a)=*u+ (Y;t’jz -7 (n $-SE*) 

L,(zL, E, a, E) = +L&,+28JSE)u, L~(u, E)=II+SEa-27~ 

Taking into account the second of Eqs.(l. 2) we transform Eq.(l. 3) to 
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dT -&z=- uL2 

2, Shook WOVI rtruoture produced by the mechrni,m of heat 
c on du c t 1 on. Let us investigate the behavior of integral curves of Eqs. (1.2) - (1.4) 
in region u > 0 in the uE-plane. We shall show that under specific conditions an 

isothecmic shock must occur in the model of medium defined by system (1.1). 

From the second of Eqs.( 1.2) we have 

dT 
-= 

df 
riMI (L4 + 2SuE3 (2.1) 

It follows from formulas (1.5) and (2. 1) that at points of the uE-plane where L4 # 0 
the relationship du L3 

= Yq = - LlLl (2.2) 

is satisfied. Using (2.2) and the last two of Eqs. (1.4) we obtain 

dE -=- 
du (2.3) 

Let us consider the case when ‘JX > 0 and 2 > 0 . We constcuct in the half-plane 

u > 0 the lines L, = 0, L, = 0, La = 0 and ,& = 0 (Figs. 1, 4 - 7), whichsub- 

sequently ace denoted by LIo, L:, Lp and Leo. We also construct curve L,” (u, E) 
at which the current Mach number is unity. The condition &f,2~2 = T must be satis- 

fied at points lying on L5’. 
Taking into consideration the second of Eqs.( 1.2) we obtain that Ls” is a parabola 

with its vertex at point A (y (y + I)-lII, 0) 

L,G u- y (y -1 I)-’ @I.-t_ SE2) = 0 

It will be seen that for u --f oo parabola Lb0 lies in the region comprised between pa- 
rabola Lb0 and curve Lao. Note that the vertex of parabola Lao lies for y > 1 to the 

left of the vertex A of parabola L,“. 
For E + 0, i.e. when the pass to an ideal (non-heat-conducting) flow, it follows 

from (1.5) that in the region u > 0 the curve L,’ (u, E, 0) defines the relation bet- 
ween the electric field and the velocity in an ideal flow near the shook wave fcont,whece 
variations of the potential can be neglected, Curve L,” has a vertical asymptote u= 0 

and two branches L,*:” which ace symmetric about the u-axis and pass through points 

(1, =t (E, - a (y - 1) / yS)“s). For fixed a, y, n’fl and S the disposition of bcan- 

ches is determined by the intensity of the electric field at point cl. 

If 
j&I<(+)“‘, ~~~~~~~~~~~~~~~~~~~~~~~ (2.4) 

[2 + 14412 (7 - 1) (1 - 2a)j”) 

the bcances of curve LzO . intersect the u-axis with a vertical slope at points ul,zo = 

(y + I)-1 {yrI f LyW - 2 (y” - 1)21”~} , and one of the branches lies entirely 
in the subsonic and the other in the supersonic region. 

When ( E, ) = $;/sS-‘h (2.5) 

the two branches intersect the u-axis at one and the same point A which is the vertex 
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of parabola L,” 
If, however, 

I E, I > (p1 ! sp (2. 6) 

then one of the branches of curve L,” lies entirely in the region u > 0, E > 0, and 
the second in the region u > 0, E ( 0. In this case both branches have extrema at 
points 

u m= 
[ 

a&---1)X “0 

r+1 1 , E;,==_t {&- [2 (p - 1) zf” - yll}“* 

whch lie on parabola Ls”. The points of curve L,” that lie to the right and to the left 
of parabola Lb0 correspond, respectively, to supersonic and subsonic flows. If M, > 1, 

the inequalities U, ( 1, 1 E, 1 < 1 E, 1 are satisfied. 
Let us construct the curve L,” (u, E, E, a). Since E (( 1, hence for E < c1 

the branches of curve Lso must lie in small neighborhoods of lines L,’ and L,“. &pen- 

ding on the values of parameters M,, y, S and E, the relative position of curves Lr’, 
L,’ and L,’ can be different. 

Several possible dispositions of these lines are shown in Figs. 1 and 4 - 7. For J > 0 

line L3“ in the half-plane CL > 0 consists of three branches. The intersection points of 

lines Ls” and Lao are determined by a sixth order polynomial in E. Such points can 
exist in the half-plane u > 0 (Fig. 5), and there can be two (Figs. 1 and 6) or four (Fig. 

4 and 7) of such points. These points, denoted by letters B, C, D and F in the Figures, 

are singular points of Eq. (2.3). A qualitative analysis of the integral curves of Eq. (2.3) 
shows that for J > 0 points B and D are focal points and points C and F are saddle 

points. 
The points of intersection of lines LrO and Lz” are determined by the cubic equation 

Sn (u2 - E12) - r+l 
2T IL2 + 1 + TM i. 

i 

- &+,,-I,(&~)] 1, ) 1L - 

1 
r [ 

(2. 7) 

which was analyzed in [3] for a = 0. 
We introduce the notation 

t& = i 0 + 1) Af12 
{I + TM124 [(M13- I)%+ 23 v- 1) M141’9 

Note that for ZZ > 0 and a > 0 conditions pa > 1 and /3a > 0 are satisfied. It can be 
shown that for I 4 I < Pa (2.8) 

and any S Eq. (2.7) has in region u < fiz only one real root u 0) in the interval 

1 EL I < dl) < fJ3, while for p3 < 1 El I < Be, depending on the value of S, it has 
in that region either one u(r) or three real roots u(l) < u@) < u(s) in the interval (ps, 
\ El 1). Below we assume that the root u(r) lies in the subsonic region. If 1 E, 1 > &, 

Eq.(2.7) has in region u < & either no roots or has two real roots in the interval 0, < 

U(1) < ZL@) < pz (Fig. 7). 
The branches of curve L,” always pass through the small neighborhood of the inter- 
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If the inequalities 

are satisfied, lines L,” 
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(2. 9) 

(2.10) 

bothermic thocka in electrohydrodynamicr 

L,” and L,‘. 

S > 849 I E, I < 61’!z 

and L,” do not intersect, while for 

s > (34, I E, I > h=/z 

the straight line Li” ’ intersects parabola L,” at two points. Since for El2 - 6, > e2 
points C and P of the intersection of lines L,” and L4’ lie in the neighborhood of 

these points, inequalities (2.10) may be taken as the approximate condition of the exis- 

tence of singular points C and F of Eq. (2.3). 

Let us, fir&consider the case J > 0. 
lo. Let the flow parameters be such that conditions (2.6) and (2.9) are simultaneously 

satisfied. It can be shown that for S > Pa the inequalities 6,s > PI and S > p4 
are simultaneously satisfied so that there exists the variation range of 1 E, 1 defined by 

inequalities (2.6) and (2.9). 
The relative disposition of lines Llo, L2“, L3’, L,” and Lb” and the qualitative 

pattern of integral curves determined by Eq. (2.3) belonging to this case are shown in 
Fig. 1. The selection of the direction of motion along the integral curves corresponding 

to the downstream motion is determined by the sixth of Eqs. (1. l), which implies that 

for q* > 0 the electric field always increases along the flow. This direction is shown 

in the diagrams by arrows. It is obvious that in the small neighborhood of branches of 

line La where L, - E, the tangent of the angle of inclination of integral curves is 

of the order of unity, while away from that line the slope of integral curves is small, 

since parameter E < 1. At all points, except the singular ones, the slope of integral 

curves at intersection with line L, ’ is vertical and at those with line L,” it is horizon- 

tal. It should be noted, however, that at points of line Lb0 Eq. (2.5) does not define the 

relation between the flow velocity and the electric field, since that equation was obtained 
for the condition that n -f SE” - 2~ # 0. 

When conditions (2.6) and (2.9) are satisfied, Eq. (2.3) has only two singular points in 

the half-plane u > 0 , viz. B (a focal point) and c (a saddle point). Since these points 
lie in the e -neighborhood of the intersection points of curves L.2U and Lao, hence the 

coordinates of points B (Us, Lb) and C (u.,, E,) are determined to within smalls of order 
t‘ by the following formulas: 

Ub = lle = 
[ 

2(r--1)Z “2, 
31- 1 1 r :+(+n)“’ (2.11) 

It can be shown that when conditions (2.6) are satisfied, the radicand in the second of 
formulas (2. 11) is positive. We use the notation 

M, = (37 - i)\A (r (T + I) -- 2y [(T - i)2-- 23 (3-r. - 1) (7 - l)l”‘)-“’ 

Analysis of the second of formulas (2.11) shows that for M, > M, the inequality 
1 E, 1 > I E,,, I is satisfied, and for 1 < M, < M, the inequality I E, \ < i Et,!c!. 

Let us consider the integral curve that passes through point (1, E,), which corresponds 

to the initial state at point & of the physical space. For E --t 0 (a --t 0) the initalpoint 
evidently tends to the ‘intersection point of lines u = I and L2’ (u, E, 0). 

a) Let M, < ft!* and E, > 0. The integral curve I (Fig. 1) after passing 
through the initial point (1, E,), moves tothe small neighborhood of the upper branch 
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of line La’, then intersects it and proceeds with a small negative slope toward smaller 
values of 11. Then it enters the small neighborhood of the same branch of line Ls’ and 
continues along it, The considered integral line cannot intersect line L,” with a verti- 

cal tangent when 0 ( E ( Eb and u < u,, since it has in that region a negative 
slope as the upper branch of line L,’ has for u < u,. 

To analyze the modes of flow in the physical plane, which correspond to various sec- 
tions of the integral curve I we have to consider Eqs. (2.2), (1.4) and (2.3). 

We denote by AL, and ACE the characteristic distances along which by virtue of 

Eqs. (2.2) and (1.4) the velocity and electric field variations are of order unity. On sec- 
tions of the considered integral curve that lay along line La” and in its small neighbor- 

hoodwehaveIL,IN.z,L,N l,IL,j~l,and ALU-1 and A&s-l. In 
the physical plane these sections correspond to regions in which the flow parameters 

(velocity, temperature, electric field and the charge density) vary and satisfy to within 

smalls of order E the integrals of an ideal flow at constant electric potential , because 

in this case 1 L, [ N E. The right-hand side section lies in the supersonic and the left- 

hand side one in the subsonic region. 

Along the section of the integral curve I, which lies away from line L3’ , the quan- 

tities 1 L, I, I L4 I and L, are of the order of unity, and Eqs. (2.2) and (1.4) imply 

that there the lengths A cU - E < 1 and A ?& N 1. In the physical plane this sec- 
tion corresponds to the narrow region of order E in which the velocity variation is con- 
siderable, while the electric field is nearly constant. This section of the integral curve 

defines the shock wave structure in a constant electric field. The part of the integral 

curve that is close to the point (1, E,) and runs along line L,” defines the supersonic 
flow upstream of the wave front , and the part of that curve which runs along L,’ de- 
fines for u < U, the subsonic flow downstream of the wave. Neglecting the small vari- 

ations of the electric field in the shock wave structure, from (1.2) and (1.5) we obtain 

to within terms of order E the system of equations 

pu = 1, 1’ = 1 + (1 - U) (yM12u - 1) (2,12) 

( fi denotes the velocity downstream of the shock wave in an ideal flow) which defines 
the variation of parameters in the region of structure I’ . 

The third of Eqs. (2.12) shows that the velocity variation in the wave structure from 
u = 1 to r~, = fi is accompanied by a monotonic increase of temperature from I = 1 
to T = T’ s 1 + 2 (y - 1) (Ml2 - 1) (y + M;‘) / (y + 1)2. The curve of 
function T = T (u) is shown in Fig. 2 (the section of parabola ac,shown by the heavy 

line). 
Thus in the considered case there exists for 1 < MI < M, and E, > 0 a shock 

wave structure which, owing to the mechanism of thermal conductivity, is continuous in 
a constant electric field. 

The interpretation of the integral curve I I (Fig. 1) which for M, < M, and E’,< 
0 passes through point (1, 19,) is similar. 

For the sake of reducing the number of figures we represent below the integral curves 
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which pass through the initial point (i, EL) for various values of parameters &, Mi, 
S and others in one and the same figure, assuming for convenience that to each case 
corresponds its own initial point, 

Fig. 1 

Fig. 2 

b) Let us assume that M > Ma and El, > 0 , and consider the integral curve 
I I1 (Fig. i) which passes through the initial point (1, El). Figure 1 shows that that in- 
tegral curve has sections which run along line O Ls in the small neighborho~ of the iat- 

ter in both the super- and subsonic regions. At these sections the quantities L%<, and 
A 5~ are of the order of unity, and the variation of parameters is close to that in an ideal 
(non-heat-conducting) flow. Sects. I and 2of the integral curve III which lie away 
from line La” have, respectively, small negative and positive slopes, Along these sec- 
tions A(&- e and ACE- 1. A narrow region I? of a length of the order E with 
considerable velocity variation and a constant electric field cor~s~nd to these sections 
in the physical field. 

Let us assume that a continuous change of velocity from the initial u = 1 to the sub- 
sonic u C: & (fl+ = p for M, > M+ in the last but one of formulas (2.12) ), which cor- 
responds to the velocity downstream of the shock wave in an ideal flow, takes place in 
region I? - In that region the variation of gasdynamic flow partieters in a constant elec- 
tric field is defined by Eqs. (2.12) and, contrary to the previous case, fl* < uer where 
ug = (2yM,)-8 (i + yMP). The quantity U, is equal to the velocity at the vertex of pa- 
rabola T = 1 (u) which links the velocity and temperature of flow in a constant electric 
field. Although Fig. 2 shows a drop of temperature with decreasing velocity after point 
e , the third of Eqs.(Z. 11) implies that in region I‘, where fip < u < 1, the temperature 
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monotonically increases. This contradiction shows that under the considered conditions 
with M, > M, and E, > 0 and inequalities (2.6) and (2.9) satisfied, the thermal con- 
ductivity mechanism does not induce a continuous structure of the shock wave. This is 

also shown by the opposite direction of arrows in sections 1 and 2 of the integral curve 
III that lie to the right and left of line L,” (Fig. 1). 

The considered model thus shows that the gas can be changed over from the state de- 

fined by the initial point i& of the physical space to that at the final point ca only through 
a jump of gasdynamic parameters at some point inside region r. The continuous vari- 
ation of parameters along the parabola between points a and lci, where behind theshock 
wave front the gas temperature reaches its maximum equal T, , corresponds in Fig. 2 to 

such transition. After that the velocity jump (and, consequently, of gas density and vo- 
lume charge) moves at constant temperature from point k, to point h, where the velo- 

city is close to the velocity downstream of the shock wave. In Fig. 1 this is shown by the 

continuous variation of parameters along the integral curve III up to point Ic,, followed 

by a jump to point k, on some integral curve IV which runs along line L,” (and along 

line L,‘) in its small neighborhood. At point k, the velocity is 

Thus the discontinuous solution of system (1.2), (I.. 4) and (1.5) obtaining in this case 

is similar to that of the isothermic jump in conventional gasdynamics [4, 51. Electro- 
gasdynamic jumps at constant gas temperature were investigated in [S], where it is shown 

that when the charged particles move in the direction of the electric field, only jumps 

with continuous electric field exist. 
The case of E, < 0, M, > M, and 1 E, 1 < u(l), where u(r) is the root of 

Eq. (2. ‘7) which determines the coordinates (n(i), - u(i)) of the lert-hand side inter- 

section point of lines L,” and L,’ is similar to the case considered in subsection (b). 

c) Let 1 E, 1 > u(l) and E, < 0. Let us consider the integral curve V (Fig. 1) 
which passes through the initial point (1, E,). As in the previous case that curve inter- 
sects line L,” hence a continuous wave structure with constant electric field does not 

exist. It is evidently not possible to obtain in this case a discontinuous solution with con- 

stant field,since the integral curves that run along line Lzo in the subsonic region (of 

the kind VI, Fig. 1) lie in the region of negative electric current J < 0. It is shown in 
[3] that for 1 E, I > ~(1) when charged particles move against the direction of the 
electric field E, < 0 and J > 0, electrohydrodynamic jumps with a discontinuous 

field and constant gas temperature exist. The gas velocity and the electric field down- 
stream are linked by the relationship 

ug + E, = 0 (2.13) 

Let us investigate the feasibility of constructing discontinuous solutions of that kind 
using the considered model. Let the velocity and the field downstream of the wave sa- 
tisfy formula (2.13). Velocity u2 is determined by the cubic equation (2.7) and the 
temperature T, by the obtained values of velocity and field from the second of Eqs. 
(1.2). The velocity u, at point ks of integral curve v, at which ends the continuous 
solution and an isothermic jump is present, is the root of the quadratic equation 

US 2- l+$-+,+&Tz=o ( (2.14) 
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It is not difficult to establish the conditions under which (2.14) has a real root in the 

(2.15) 

When conditions (2.15) are satisfied, it is possible to construct in this case a discon- 
tinuous solution with an isothermic jump for the input system of equations. Such solu- 
tion is shown in Fig. 3. Between the initial point u and point k3 of maximum tempera- 

ture TP, which corresponds to the temperature downstream of the shock, the velocity 

and the temperature constantly change along parabola 1 (the second of formulas (2.11)) 

with a constant field,and then the velocity (and also the electric field, the gas density, 
and the volume charge) changes abruptly at constant temperature to its value at point 

k4 of parabola 2 (the second of formulas (1.2)) for E = E, = -I+. This solution is 
represented in Fig, 1 by the segment of integral curve V between points (1, E,) to 

point k,, then by the jump to point k4 which lies near the subsonic point (u(l), -u(i)) 

of the intersection of lines L,’ and L,” on the integral curve VI I. This is followed by 
the continuous variation of parameters that corresponds to an ideal flow along the integ- 

ral curve VII which runs along L,” in the ~-neighborhood of lines I;,” and Lzo. 

Fig. 4 

Conditions (2.6), (2.9) and (2.15) together with inequalities ( E’, 1 > u(l) and 
E, < 0 , thus provide the necessary conditions of the existence of isothermic jumps 
with a varying electric field whose structure induced by the viscosity mechanism was 
investigated in [S]. 

2’. Let us investigate the case, when the flow parameters are such that the inequali- 
ties (2.6) and (2.10) are simultaneously satisfied, i.e. 

The disposition of lines Ls’ and L$ and the qualitative pattern of integral curve 
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behavior in region E > 0 are similar to those considered in (a) and (b). In region 
6 < u Eq. (2.3) has three singular points. The most interesting case of disposition of 

linesLi”, L,” and L,’ when the left-hand intersection point of lines L,” and L,” lies 

to the left of point (u(i), - u(i))of intersection of lines LI” and 1,: , is shown in Fig. 4 . 
The related criterion is of the form 

If 1 h’, 1 < fi3 then, as noted above, 1 E, ) < u(1). The integral curve I which 

passes through the initial point (1, El) defines a continuous shock wave structure with 

a constant electric field. 
d) let us consider in greater detail the integral curve II which for (3s < 1 E, J < 

I EF 1 passes th rough the initial point (1, E,) . Note that BF depends on E, and that 

for El2 - 6, > 82 point F lies in the a-neighborhood of the right-hand point ofin- 

tersection of parabola L4’ with the straight line L,“. Allowing for this, we can repre- 

sent the inequality I It,‘, 1 < I EF ) to within quantities of order E in the form 
1 El 1 >> (Zp,)-J. The initial electric field is bounded by the condition I E, ) < 1, 

since we consider the case of J > 0. For y > 1 and M, > 1 the quantity p4 > 

0.5. It can be shown that for 5’ > fir, conditions 6,s > $i and S > pa, and for 

s > /!is the condition fja > 6,:’ * are satisfied. Since fl:, < 1: there exists a range 
of variation of parameters &’ and iv, for which the inequalities bounding from below 

the quantity I E, 1 do not violate the condition J > 0. 

Fig. 5 

If the root u(l) of Eq. (2.7) is in the subsonic region, the integral curve I I has sections 
running near the line L2“ in the super- and subsonic regions. These sections correspond 
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to the state of gas up- and downstream of the wave front, In the subsonic region the in- 
tegral curve intersects line L 3’ in the. &,-neighborhood of line L,“, where u = --E 
and then runs along line L,“. In the physical plane these sections correspond to regions 
of ideal (non-heat-conducting) flow, since here 1 L, 1 -e. Along section I of the con- 
sidered integral curve we have ALU - E and A 5~ - 1. That section corresponds to 

the narrow flow region with considerable variation of velocity at constant electric field. 

Along section Z the quantities A&, N E, A 5~ N e.This section describes a narrow flow 

region with a sharp variation of velocity and electric field. For e -+ 0 the velocity U, 
on this integral curve downstream of the shock wave is related to field ES by the equal- - 

ity 1~~ + E, = 0 and is determined by the cubic equation (2.7). 

The integral curve II thus defines a continuous structure of the shock wave induced 
by the thermal conductivity mechanism with a varying electric field. The structure 
shows that downstream of the wave the velocity and the electric field are related by 

the equality us + Es = 0. 
Note that the region of initial values of the electric field E, may be defined more 

precisely by analyzing the angles of the integral curve slope at intersection with LI” 
in order to eliminate integral curves of type II I which penetrate into the region or nega- 

gative currents J < 0 and have no physical meaning. 

The case when the initial electric field 1 E, I > 1 E, 1 is similar to that considered 

in subsection (c). The inequality 1 El I> I Ep 1 can be represented in the form s-1 < 
1 E, I < (Zb,)-’ accurate to within quantities of order E . 

Note that when the root u(r) of Eq.(2.7) is in the supersonic region and the charged 

particles move in the opposite direction to the electric field (J > 0, E, < 0), the con- 

sidered model does not indicate the existence of a shock wave structure. 
3’. Let conditions (2.4) and (2.9) be simultaneously satisfied, which means that the 

electric field at point j, satisfies the condition. 

lElj<min{($-)I”, @), S>p, (2.16) 

In this case Eq. (2.3) does not have singular point& The qualitative pattern of integral 

curves behavior is shown in Fig. 5. 
It is obvious that in this case there are no initial conditions under which a continuous 

shock wave structure would exist. For E, > - u(l) integral curves of type I yield a 

structure with an isothermic jump and a continuous electric field. 
If E, < --u(l), the electric field in the isothermic jump is discontinuous. The ne- 

cessary conditions for the existence of such jumps are defined by the inequalities (2,15), 

(2,16) and 1 E, 1 > u(l) _ The last inequality and conditions (2.16) are not contradict- 

ory, if the parameters S, M, and y are such that /3a < min {61‘lt, pl'N3-1/~}. This 
case is similar to that considered in subsection (c). 

4’. It can be shown that for pa < S < b6 conditions (2.4) and (2.10) are simultan- 
eously satisfied, i.e. the case when 

is possible. 
&‘f, < 1 El 1 < fJiia s-‘l’ 

Equation (2.3) has then two singular points in region ~1 > 0, LL.’ < 0. The pattern of 
integral curves related to this case is shown in Fig.6, where D and F are, respectively, 
focal and saddle points. The type of parameter variation in the shock wave structure is 
similar to that considered in case 3’, if the intersection point H of lines Ll” and Lz* 
lies to the left of the left intersection point of lines LI’ and L4’, as in Fig. 6. When H lies 
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to the right of point L), the qualitative pattern of behavior of integral curves is similar 
to the cases considered in case 2’. 

Fig. 6 

9, Shack way6 gtructurs where the fog move in a direction 
opporita to that of g&l, Let parameter J < 0 when n ) 0 and Z > 0 , 

and let Eq, (2. ‘7) have three different roots @! ( ~(2) ( IL(~). to which correspond the 
values E@) > I?@) > J%‘@ of the electric field (since the roots of (2.7) defiie one of 
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the coordinates of intersection points of line Lzo with the straight line L,“). The integ- 

ral curves of Eq. (2.3) which have a physical meaning lie in the region u > 0, E < 0 
below the straight line L,” where J ( 0. The qualitative pattern of behavior of in- 

tegral curves is shown in Fig. 7 for the case in which condition (2.6) is satisfied, Eq. (2.3) 

has three singular points in region u > 0, E < 0, and the left-hand intersection point 
of lines L1“ and L4” lies to the left of point (U (l), E (l’ ) of intersection of lines L,” 
and Lao. 

Let us consider several possible kinds of integral curves which yield a shock wave struc- 
ture depending on the position of initial point (1, E,) which defines the state of gas 
upstream of the wave front. If ~(3) < E, < E@), then the integral curve I defines the 

structure of a wave with an isothermic jump and a continuous electric field, The pattern 

is here similar to that considered in subsection (b). The wave structure consists of section 
I of the integral curve I and of the isothermic jump at constant field from point k, to 

point kz of the integral curve II. The velocity at point kl is determined from Fig. 2 for 

the obtained temperature T2 downstream of the shock wave. 
A distinctive feature of curves III and V is that the velocity and the electric field 

upstream of the wave front. whose structure is defined by any curve of this kind, are linked 

by the relationship u*@) + bE * ( w = 0, where U* c2) and E* t2) are the dimensional co- 

ordinates of the mean intersection point of lines Llo and L.” (in dimensionless form 

u -; i. and 15 = --1). The electric field E2 downstream of such wave front must be spe- 
cified and,if E, < E, < E(I), the shock wave structure is continuous with a variable 
electric field, produced by the thermal conductivity mechanism (curve V). When E(r) < 

E, < E c and the conditions 

are satisfied, there exist such waves with variable electric field whose structure consists 

of section 2 of the integral curve III, along which the electric field, the velocity and 
other parameters change abruptly, and of the isothermic jump with a constant electric 

field equal to that from point liQ to some point k, of the integral curve IV. The position 

of point k3 where the jump is located can be determined by resolving the conditions at 
the discontinuity which for a specified field downstream of the field are now closed. 

Then, using the second of formulas (1.2), the velocity uq is determined at point k,. The 

necessary conditions for the existence of such jumps are of the form (3.1). 
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